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Abstract

A method for calculating fully anharmonic vibrational ®tatounts, state densities, and
partition functions for molecules is presented. The metimadkes use of a new quantity, the
intrinsic density of states, which is associated with the states ttigtialy arise from a given
mode, mode pairing, or higher-order mode coupling. By usinty low-order intrinsic den-
sities, the fully-coupled anharmonic vibrational resulhde constructed, as shown by our
application of the method to methane, £tnd cyclopropene 48,4. Truncation of the in-
trinsic expansion at the coupling of pairs of modes yieldsay improved scaling over direct
evaluation of the full-dimensional result and recoversrgddraction of the total anharmonic-

ity. We also discuss the relation of the new quantities tostihecture of the potential energy

surface.
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Accurate predictions of kinetics and thermodynamics ddpeitically on accurate evalua-
tion of the rovibrational density of statgs(E), and its related quantiti€'s? In the classic Rice,
Ramsperger, Kassel, and Marcus (RRKM) theory of unimodadactions, the rate constant is
proportional to the number of states at the transition datieled by the density of states of the
reactant. Similarly, in bimolecular canonical transitstate theory (TST) the rate constant is de-
pendent on the density of states through the appearancetdfgpafunctions corresponding to
the reactants and to the transition statenfortunately these quantities are difficult to evaluate
accurately for several reasons, including: the need fop@rguantization, couplings between ro-
tations and vibrations, and anharmonic couplings amomgstibrations. In this letter we present
a general and efficient scheme for including the importaheamonic coupling.

A common approximation, which makes the computatiop @) quite amenable, is to use a
separable model in which every vibrational degree of free@assumed to be totally uncoupled
from any of the others. Most often each mode is further assibmée harmonic, although some-
times modes are given special treatment as Morse osc8ldtordered rotors, etc... Algorithms and
computer implementations of these methods, e.g., the t&ssical Whitten-Rabinovitch (WR) ap-
proximation? the Beyer-Swinehart (B8)and Stein-Rabinovitch (SR)state counting algorithms,
or the steepest-descent metHodre readily available. As might be expected, at higher éegrg
these approximations can significantly underestimate thermonicity because of the neglect
of the coupling between vibrational modes. This is true ewéen the underlying independent
vibrations are treated as anharmonic oscillafots.

Many attempts have been made to improve on the separablexapation by looking at the
specific coupling between different modes. For instanoe,cthupling of bends to stretches has
been studied and empirical models describing this cougimge been constructéd;13the role
of stretch-stretch coupling was been investigated indnat systems?14 numerous methods
for treating torsional motions have been developéd®8and Monte-Carlo integration has been
applied to calculation of quantum vibrational states usisgectroscopic (e.g., Dunhafhexpan-

sion which includes some anharmonic terfis23It is also worth noting the recent semi-empirical



work of Schmat#* as well as the thermodynamic method, which relies on experiai date?>2°
the density correlation function method of Jeffreysl, 2”22 and the use of path-integral methods
to calculate the quantum partition function directd° The accurate inclusion of the coupling
terms, however, remains an open issue.

Despite its associated problems, separability has centai features which we wish to re-
tain. It allows a complex problem, the calculation of thel-flimensional coupled density of
states,p(E), to be broken down into a set of small, readily computablentjtias that can be
then reassembled to yield the full result. As such it rentlege, potentially intractable problems
amenable to computation. In this letter we propose a metbothé efficient construction of the
anharmonic density of states via an expansion in ternistiohsic n-mode densities of states. This
formalism includes the separable approximation at its kiveeder and is systematically improv-
able by including the effect of coupled pairs, triples, etof modes. Furthermore, we show that,
while accurate results are not obtained with 1-mode ing8)sccurate results can be obtained via
2-mode intrinsic state densities.

The intrinsicn-mode densities of states correspond to the component afahsity of states
that cannot be generated by convolutions of lower-modeitiensf states and will be denotefy,

Theintrinsic two-mode density of states,

Aij(E) = pij(E) — pi(E) * pj (E), (1)

wherep;j(E) is the exact density of states spanned by modesl j while p;(E) andp;(E) are the
one-mode densities of states associated with each indiMdade and the notatica+ b denotes
the convolution. Here the one-, two-, and reduced-modeitienare calculated with the remaining

coordinates fixed at some reference. The intrinsic thredenttensity of states is, similarly,

Aijk(E) = pijk(E) — pi(E) * pj (E) % pk(E) — A (E) * p(E) — ik pj —Ajk(E) x @i (E).  (2)

Comparisons of the 2- and 3-mode intrinsic state densitigsfwll 2- and 3-mode state densities



are shown in Fig. 1.
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Figure 1: Selected 2- and 3-mode intrinsic densities oéstir the indicated mode combinations
of CHa.

The practical usefulness of the previous equations is th@tan make general expressions for
the full dimensional molecular state density through vasiorders of thaé-mode intrinsic state
density. At first order the method reduces to the usual sefmepproximation. At second order,
Aijk(E) and all higher-order intrinsics are set to 0 and one can whigdollowing equations for the

pairwise coupled 3- and 4-mode systems:

p(E) = pi(E)«pj(E) *pu(E) +Mj(E) * p(E) + Bi(E) +.py +A(E) +pi(E), (3
PRAE) = p(E)*pi(E)*pu(E) «i(E) + M (E) x pu(E) * 1 (E)
+ik(E) * pj (E) * o1 (E) +Ajk(E) * pi(E) * pr(E) + 4y (E) * pj (E) * p(E)
+Aj1(E) * pi(E) * p(E) + A (E) x pi(E) * pj (E) +Aij (E) * Ay (E)
+Aik(E)*Aj|(E)+Ai|(E)*Ajk(E), 4)

where the superscriph) indicates the order of the approximation. Generalizatolatger molec-
ular systems and/or to higher n-mode approximations iggtirward. While the previous equa-
tions are suitable to continuogs i.e., those derived from classical expressions, withhsligod-

ification they can be used for discrete, i.e., quantpmFor discrete states, the pairwise coupled



3-mode system is

Pi(ﬁ()(E) = pi(E) xpj(E) * px(E) + %Aij (E) *p(E) + %Aik(E) *Pj + %Ajk(E) «0i(E),  (5)

where the extra factors @farise from the requirement thpiszk) (E) > 0.

Here, we have applied the 2-mode version of method to thelegion of state counts, densities
of states, and partition functions for methane, CldAnd cyclopropene, 4H,4. Classical phase
space integrals for state counts and densities of statesevatuated using our recently published
Monte Carlo algorithmmcPS1.3! For methane, we also demonstrate the quantized versiom of th
method where we solve for th andA;j using 1- and 2-dimensional vibrational Hamiltonians and
compare with full-dimensional vibrational configuratiorieraction (VCI) results. In all cases, the
coordinates employed are mass-weighted Cartesian noro@dgsrand calculations correspond to
the vibrational states with zero angular momentum.

As a test of the 2-mode coupling scheme we have used methame wght-binding poten-
tial.3%33 This potential is a good approximation to the takeinitio potential and has the advan-
tage of being exceptionally quick to evaluate. With thisgoital we can easily achieve millions
of samples for all of the Monte Carlo runs and this tightly wenge the results and minimize any
effects of statistical noise. For reference, the vibraidrequencies of Chiwith this potential are
Vi =Vp = V3 = 1573 cnl, vy = v5 = 1692 cnml, vg = 3157 cnil, andv; = vg = vg = 3248 cn1d,
where we have reflected degeneracies by repeating fregegeindhe list so that the subscripts also
number the 9 normal modes. The accuracy of the pairwise edug#nsities of states is shown in
Fig. 2 where it is compared with the separable approximaaioe with the fully coupled result.
The agreement gb(@ with the full-mode coupled density of states is excellemttfe classical
densities, whereas the usual separable approximatiorrpnei@icts the state density by a factor
of 2 at threshold. For this system(? results in negligible improvements over the harmonic case
due to cancellation of positive and negative anharmoekitiThe comparison of the integrated

guantum density of stated/, is also shown in Fig. 2. While the pairwise coupled appration



yields a general shift of states to lower energies, it is @xynall improvement over the separable
case. It is worth noting, however, that applying a clasicadiculated anharmonicity correction
to the quantum harmonic vibrational properties may yielddjagreement with results based on
direct state countg!
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Figure 2: Accuracy of separable and pairwise coupled appratons to (a) the classical density
of states and (b) the integrated quantum density of stateadthane.

One might assume that only certain modes (i.e., those thatianilar in frequency or in other
criteria) couple, and we can test this hypothesis by lookirtge 2-mode intrinsic densities. Within
the normal coordinate representation used here, almastthié modes couple with all of the other
modes. In particular, most of the low-frequency bends oeuplthe high-frequency stretches,
and it is the anharmonicity from this intermode couplingtthi@lds a large portion of the total
anharmonicity of the full result as shown in the Supportinfpimation (SI). When using normal
modes, at least, this result underscores the necessitglofling the coupling between all pairs of
normal modes in order to recover the full anharmonicity.

We have also tested the accuracy of the pairwise coupleel degsities for cyclopropene, for
which we employed a dire@b initio potential at the B3LYP/6-311++G(d,p) level of theory. All
electronic structure calculations employed the GausSapezkage’* Results are compared with
a calculation of the full-dimensional density of statesiig. B. Evaluation of the pairwise coupled
density of states is significantly less computationally deding. While adequately converging the

full-mode density of states for cyclopropene took appraatiety 125,000 hours of computer time,



the equivalent calculation of the two-mode coupled stateside required only 4,000 computer

hours using the same cluster. The accuragy'8fis very good for cyclopropene and it is a signif-
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Figure 3: Accuracy of the separable (1-mode) and pairwised@e) densities of states for cyclo-
propene.

icant improvement ovepY). Due to several of the modes having large positive anharciti@s in
cyclcopropene, the harmonic approximation yields be#suits than the separable approximation.

To further motivate the intrinsio-mode densities, it is useful to consider their relationde p
tential energy surfaces. The potential energy of a molewitle n degrees of freedom may be
expanded about a specific geometry as

Vraylor(da, - - 0n) = Vo + Z a Gi + 2 5 aazv Gigj + (6)
di 0ioq;

where\j is the potential energy at the reference geometryquade the coordinates which we take
without loss of generality to be 0 at the reference structilitee expansion given in Eq. 6 corre-
sponds to the standard multivariable generalization offdndor series, and the polynomial order

of the expansion defines both the maximum number of degrefeseafom that can be coupled as

well as the maximum order of the coupling. Alternatively, ean expand the potential as

Vo-MR (G, -+ tn) = Vo + 5 VP (@) + T VP (a0 + ., )
I

i<)



where

V() = V(q)—Vo|th=0vn#i

V@ (qg,q) = V(a)-VV(q)-VI(qj) —Vo|an=0vn#i,j. (8)

The arrangement of the sum in form given by Eq. 7 and Eqg. 8 isllystermed then-mode
representation (nMR), and has a been used extensively viliretional dynamics communitsp
For convenience in the subsequent equations, we will drezéhnoth-order terrivg since this can
always be removed by an appropriate shift of the energy.e¥fit approximations tp involve
the truncation of either Eq. 6 or Eq. 7 at different ordersr iRstance, direct state counts based
on a perturbation theory expansion of the vibrational epérgels, for instance the methods based
on the Dunham expansion, often involve the truncation ofteat the quartic level. The equations
proposed here, however, truncate Eq. 7 at a specified nunilmodes rather than an order of
polynomial expansion and coupling to infinite order withach pair, triple, etc... is included.

We will now explicitly consider the form of the two-mode iimtsic density of states. For two

modes, the number of states with energy less than or eqiiggiven by,

W (E) E/OEPij(X)dXZ i—;T/@[E—V] (E—V(a,q;j))dag dq;, (9)

whereh is Planck’s constan® is the Heaviside step function, and we have already perfdrme
the analytic integration over the momenta. For a more detagkplanation of this procedure, we
refer the reader to the details of our Monte-Carlo algorithnSubstituting the expression for the

pairwise coupled state densities into Eq. 9 yields,

W (E) = i—g/O[E ~V] (E-V®(q;,qj) —VP(q) -V (q;)) dgidg;. (10)

Now introducing the the separable approximation for theepbéal we arrive at, after some manip-



ulation,

WiE) = 1 [OlE -] E-v(g) -V (q))dada,

2m
2 /O[E — VW] v@ (g, qj) i da;
2m

+75 [(©E~V]-BE ~V®)) (E-Va(a.a) ~V¥(a) -V ¥(qy) daydaf11)
where we have used® =V®(q) +V®(q;j). The first term is the state count obtained via the
1-mode separable approximation. The second term of Eq. fr&ésponds to a correction over
the region defined b®[E — V()] due to the potential coupling(?. When the sign o¥ @ is
negative, meaning that the sum\6f!) terms yields too high of an energy, the number of states is
increased, whereas when the sigivé? is positive the number of states is decreased. An example
of V(@ is shown in the SI for methane. The final piece of Eq. 11 cooedp to a correction
due to the expansion or contraction of the integration regiecause o¥ (2. An example of this
correction is shown in Fig. 4 for a stretch-bend coupligg, (g) and a stretch-stretch coupling
(97, gs) for methane. From the plots in Fig. 4 and the Sl it is appatieat both pieces of the
correction could be important; however, from the specifiaraples we have looked at in both
methane and cyclopropene, the third term of Eq. 11 has beemtre important. From the
associated plot, one can also see some of the fortuitougkatien of errors that occurs in the
harmonic approximation. Whereas the sum of the one-modhestézads to a compression of
the integration region compared to its harmonic approxiomaat each specified energy, the full
potential both compresses the region along certain axes)gahds it along others.

We have introduced a mode coupling scheme based on hiezakrchinode expansions and
have demonstrated that accurate full-dimensional anhaicrstate densities may be obtained by
truncating the representation at 2nd order, i.e., by camsid only a pairwise coupled represen-
tation. As shown for methane and cyclopropene, the paireospled method yields a significant
improvement in the calculated density of states over eitherharmonic approximation or the

one-dimensional, separable approximation. In additio®method we have developed can be sys-
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Figure 4: Contour plots o¥(gp,qs) and V(qz,qs), in red, versusv®(qp) + V@ (gg) and
V@D (g7) +V@(qg), in green, and the respective harmonic approximationsiuia for CH;. Con-
tour lines are at 10 000, 20 000, 30 000, and 40 000craspectively.

tematically improved by the inclusion of important 3- or heg-mode couplings. While the use of
normal modes uncouples them at second order for infinitdglirsplacements, they may not be the
most efficient coordinates for vibrational calculationgygneral. We and other authors have dis-
cussed alternative coordinate choices with which to perfeibrational calculations!-36-4%and

the present approach can benefit from these efficiency inepnewts as well. For instance, one
could attempt to minimizé;;(E) with respect to the coordinates. Here we have evaluated the
classical intrinsim-mode density usingicPSI, and also shown that it is possible to apply this
correction by using quantum mechanically calculadgdE). This method offers an approach to
intermode coupling through the use of functions that areeddpnt on two or more modes, which

may be of use in the calculation of kinetic and thermodynagui@ntities.
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